The invention discloses an indoor positioning method based on manifold learning and an improved 
support vector machine. The method comprises a step of determining a positioning area, dividing the positioning area according to an indoor structural characteristic and a 
layout characteristic, and obtaining a 
classification result, a step of obtaining offline training data, and collecting hotspot 
RSS signal values which can be received by the reference points in different classification area as a training 
data set, a step of using an isometric 
mapping algorithm to carry out training data characteristic extraction, a step of using the training data to carry out 
support vector machine classified training, using a taboo 
search algorithm to carry out 
support vector machine classification hyper parameter searching, and establishing the 
support vector regression model of each category at the same time, a step of carrying out online positioning, collecting the 
RSS signal value of each hotspot of a target, using a 
support vector machine classification model to carry out classification, and obtaining the rough positioning area of the target, and a step of carrying out the accurate positioning of the target by using the 
support vector regression model according to the 
classification result. According to the method, the time-varying characteristic of the 
wireless signal intensity is effectively suppressed, and the precision is obviously improved.