The invention presented herein relates to a 
niobium-containing 
zirconium alloy for use in 
nuclear fuel cladding. The 
Zr alloy of this invention with superior 
corrosion resistance is characterized as comprising an 
alloy composition as follows:1) 
niobium (Nb), in a range of 0.8 to 1.2 wt. %; one or more elements selected from the group consisting of iron (Fe), 
molybdenum (Mo), 
copper (Cu) and 
manganese (Mn), in a range of 0.1 to 0.3 wt. %, respectively; 
oxygen (O), in a range of 600 to 1400 ppm; 
silicon (Si), in a range of 80 to 120 ppm; and the balance being of Zr,2) Nb, in a range of 1.3 to 1.8 wt. %; 
tin (Sn), in a range of 0.2 to 0.5 wt. %; one element selected from the group consisting of Fe, Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr,3) Nb, in a range of 1.3 to 1.8 wt. %; Sn, in a range of 0.2 to 0.5 wt. %; Fe, in a range of 0.1 to 0.3 wt. %; one element selected from the group consisting of 
chromium (Cr), Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr, and4) Nb, in a range of 0.3 to 1.2 wt. %; Sn, in a range of 0.4 to 1.2 wt. %; Fe, in a range of 0.1 to 0.5 wt. %; one element selected from the group consisting of Mo, Cu and Mn, in a range of 0.1 to 0.3 wt. %; O, in a range of 600 to 1400 ppm; Si, in a range of 80 to 120 ppm; and the balance being of Zr.